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Abstract. We suggest that the static configurations of M-theory may be described by the matrix regular-
ization of the supermembrane theory in static regime. We compute the long-range interaction between a
M2-brane and an anti-M2-brane in agreement with the 11-dimensional supergravity result.

1 Introduction

The proposed M(atrix) model [1] as a non-perturbative
formulation of M-theory [2] has provided a new and ef-
fective framework for studying dualities and connections
between different string theories [3–7]. This model is the
dimensional reduction of 9+1 U(N) SYM theory to 0+1
dimension [8] in the large-N limit, which latter was in-
troduced and studied as the dynamics of N D0-branes [9,
10].

In the initial developments of the supermembrane the-
ory [11,12] in an 11-dimensional supergravity back-
ground, it was observed that the existence of κ-symmetry
imposes restrictions on the background fields which re-
duce to the 11-dimensional supergravity field equations.
Since M-theory has the 11-dimensional supergravity as its
low energy limit, the above observation suggests that ev-
ery definition of M-theory should be closely connected to
supermembrane theory. Thus, M-theory in an infinite mo-
mentum frame and supermembrane action in light-cone
gauge, written in a matrix form, are related [1].

On the other hand, in the formulation of the M(atrix)
model for M-theory the notion of a substructure has
played a central role. Therefore it is plausible to expect
that the same substructure, in the form of a matrix for-
mulation, should play a role in the framework describing
the static configurations of the M-theory.

As there is no definition for covariant M-theory, it is
tempting to study it in various gauges: light-cone, static,
etc. The above mentioned relations between supermem-
brane theory and M-theory in light-cone gauge motivates
us to search for a similar relation in static gauge. Our
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starting point is the action of supermembranes in 11 di-
mensions. By restricting the action to the static part of
its phase space, we obtain an action which, after its κ-
symmetry is fixed, be written in matrix form.

The resulting matrix action is invariant under SO(9)
rotations of target space. Also, the action has a gauge
symmetry which corresponds to the world volume area-
preserving symmetry. Despite the existence of the gauge
symmetry, the interpretation of the model as a dimen-
sional reduction of SYM theory seems impossible.

We introduce solutions for the action, which, as is ex-
pected from M-theory, have vanishing quantum correc-
tions. We also calculate the long- range interaction of par-
allel M2-brane and anti-M2-brane solutions of the matrix
model. The result is W (r) ∼ 1/r6, which agrees with the
uncompactified 11-dimensional supergravity, in direct in
contrast to the light-cone M(atrix) theory result in com-
pactified limit W (r) ∼ 1/r5.

Conventions and some calculations are gathered in ap-
pendices.

2 Static supermembrane action
as a matrix model

We use the following notations everywhere:

a, b = 0, 1, 2; µ, ν = 0, 1, ..., 9, 10;

I, J, K = 1, 2, ..., 9, 10; and i, j, k = 1, 2, ..., 9.

The supermembrane action in 11 dimensions is [13,11]

S =
−1
2

∫
d3η

(
2
√−g

+ εabcθ̄Γµν∂aθ × (Πµ
b ∂cX

ν +
1
3
θ̄Γµ∂bθθ̄Γ

ν∂cθ)
)

, (1)
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where Π and g are

Πµ
a = ∂aXµ + θ̄Γµ∂aθ, gab = Πa · Πb, (2)

and θ is an 11-dimensional Majorana spinor.
The action (1) is invariant under the global supersym-

metry (SUSY) transformation

δXµ = −ε̄Γµθ, δθ = ε, (3)

and also under the local fermionic symmetry, κ-symmetry

δXµ = κ̄(1 − Γ )Γµθ, δθ = (1 − Γ )κ, (4)

where

Γ =
εabc

6
√−g

Πa
µΠb

νΠc
ρΓµνρ, Γ 2 = 1.

We decompose the coordinates as ηa = (τ, σr), r = 1, 2.
We go to the static regime defined by

X0 ≡ τ, ẊI ≡ θ̇ ≡ 0; (5)

then the components of g are found to be

g00 = −1, −fr ≡ g0r = −θ̄Γ 0∂rθ,

grs = ḡrs − frfs, and ḡrs ≡ ΠrIΠsI ; (6)

and it can easily be shown that,

g = −ḡ,

ḡ = detḡrs =
1
2
εrsεr′s′

ḡrr′ ḡss′ =
1
2
(εrsΠI

r ΠJ
s )2. (7)

Putting all the above relations into (1), we obtain

S =
1
2

∫
dτ d2σ

(
− e−1 − eḡ

− 2εrsθ̄Γ0I∂rθ∂sX
I − εrsθ̄Γ0I∂rθθ̄Γ

I∂sθ

)
, (8)

where e appears as an auxiliary field for linearizing the
action; its equation of motion gives

e2ḡ = 1, (9)

which can be used for eliminating e. Due to (9), configu-
rations with ḡ = 0 are unacceptable.

The action (1) has a local fermionic symmetry, called
κ-symmetry, which allows one to gauge away half of the
fermionic degrees of freedom of θ. θ is a 32-component
11-dimensional Majorana spinor and is real in a real rep-
resentation of Γ matrices, which we use (see Appendix 1).
We fix the κ-symmetry by the light-cone gauge 1: (i.e.
(Γ 0 + Γ 10)θ = Γ+θ = 0)

θ =
1
2

(
λ

λ

)
, λ = λ∗. (10)

1 In fact, we could do gauge-fixing before restricting the ac-
tion to its static regime by the ansatz (5).

Then it can be shown that

θ̄Γi∂θ = 0, θ̄Γ10∂θ = −1
2
λT∂λ,

θ̄Γ0i∂θ = −1
2
λTγi∂λ, θ̄Γ0,10∂θ = 0. (11)

After integration over τ ( which gives T ), the action (8)
takes the form

S = −1
2
T
∫

d2σe−1
(

1
2
{Xi, Xj}2

+ ({Xi, X10} − 1
2
λT{Xi, λ})2

+ λTγi{Xi, λ} + 1
)

, (12)

where

{a, b} = e (∂σ1a∂σ2b − ∂σ2a∂σ1b)
= e εrs∂ra∂sb, (13)

which satisfies the Jacobi identity.
We can now formulate our matrix model. By the usual

substitutions [13,1,14] 2

{a, b} ⇒ −i [a, b],
∫

e−1 d2σ ⇒ Tr, (14)

with the following consequences:∫
e−1 d2σ

(
{a, b}c

)
=
∫

e−1d2σ

(
a{b, c}

)
⇒

Tr
(

[a, b]c
)

= Tr
(

a[b, c]
)

,∫
e−1 d2σ{a, b} = 0 ⇒ Tr[a, b] = 0, ; (15)

one then finds

S = −1
2
αT Tr

(
1
2

[Xi, Xj ]2

+ ([Xi, X10] − γ
1
2
λT[Xi, λ])2

+ iλTγi[Xi, λ]
)

+
1
2
βT Tr (1). (16)

Here α, β and γ appear due to dimensional considerations
in going from the bracket to the commutator and also from
integration to trace. We will fix α and β later.

The action (16) has a gauge symmetry which may be
identified with area-preserving symmetry of the superme-
mbrane [13]. It is defined by an arbitrary matrix Λ:

δgaugeX
i = i[Xi, Λ],

δgaugeλ = i[λ, Λ],

δgaugeX
10 = i[X10, Λ]. (17)

2 There is a factor n for n×n matrices in going from bracket
to commutator and also from integration to trace. Here we
absorbed the factor every time in commutator entries.
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Furthermore, the action (16) is invariant under SUSY
transformations

δXi = 0,

δX10 =
1
2
ηTλ,

δλ = η, (18)

where η is an anti-commuting SO(9) spinor, and it can
be shown that the above transformations form space-time
SUSY algebra

[δη, δη′ ]Xi = 0,

[δη, δη′ ]X10 = η′Tη,

[δη, δη′ ]λ = 0, (19)

which for X10 can be understood as a non-zero transla-
tion, because of {qA, qB} = Γ 10P10δAB . Here, the 10th
direction is appearing as the 11th direction in the super-
Galilean algebra [1,15]3.

3 Solutions with vanishing quantum
corrections

In this section we describe certain configurations that are
the solutions of the classical equations of motion, and show
that the quantum corrections at one-loop order vanish
for these configurations. So these solutions, as is expected
from similar ones in M-theory, show Bogomol’nyi-Prasad
Sommerfield (BPS) behaviour.

The one-loop effective action around the classical so-
lutions

X10 = λ = 0,

is computed in Appendix B, and the result is

W =
1
2
Trlog

(
P 2

k δIJ − 2iFij

)

− 1
4
Trlog

(
P 2

i +
i

2
Fijγ

ij

)
− Trlog(P 2

i ), (20)

assuming the definitions

Pi ∗ = [pi, ∗], Fij ∗ = [fij , ∗], fij = i[pi, pj ], (21)

3 In general, to find the complete SUSY transformations, one
must search for those which respect κ-symmetry gauge- fixing
by solving the equation

Γ+θ = 0 ↔ Γ+(θ + ε+(1−Γ )κ) = 0 ⇒ Γ+(ε+(1−Γ )κ) = 0.

This is a constraint equation between SUSY and κ-symmetry
parameters ε and κ, as global and local spinors, respectively.

A rapid solution is κ = 0 and ε ∼
(

η

η

)
, which leads to SUSY

transformations (18). Another closed-form solution seemed in-
accessible in our static case. A similar observation is reported
as a result of non-linearities of equations of motion [12]. So we
just keep (18).

where pi is classical solution of Xi.
Every solution with

Fij = 0, ∀i, j, (22)

leads to vanishing of the one-loop effective action, due to
the following algebra:

W ∼ (
10
2

− 16
4

− 1) Trlog(P 2
i ) = 0.

We next search for these solutions4.
To begin, we consider a solution of (12) which repre-

sents a single flat static membrane. With the conditions
X10 = λ = 0, the equations of motion (12) are

{Xi, {Xi, Xj}} = 0.

Then

X1 = σ1, X2 = σ2, other Xi = 0, (23)

represent a single membrane solution,

{X1, X2} = {σ1, σ2} = e = 1,

due to the equation of motion of e. In the matrix version
the conditions X10 = λ = 0 give

[Xi, [Xi, Xj ]] = 0,

which, analogous to (23), leads to

X1 =
L1√
2πn

q, X2 =
L2√
2πn

p, other Xi = 0, (24)

with [q, p] = i and 0 ≤ q, p ≤ √
2πn eigenvalue distri-

butions. This solution represents a 2-dimensional object
extended in X1 and X2 directions, and clearly it satis-
fies (22), thus is stable under quantum fluctuations. Also,
because of the spectrum of p and q, the area of the 2-
dimensional object (M2-brane) is L1L2.

4 The point-like configurations which may be represented by
the solutions

Xi = diag(xi
1, x

i
2, ..., x

i
n), X10 = λ = 0,

are not acceptable because of vanishing ḡ in (9). This is con-
sistent with the fact that the individual 11-dimensional super-
gravitons, which are candidates for “quark” substructure of
our model (due to their role in the infinite- momentum-frame
M(atrix) model as “partons”) cannot be studied as static con-
figurations in 11 dimensions, because they are massless. This
argument will also be supported by the equation of motion of n,
the size of the matrices. By inserting the solutions introduced
above into the action, one finds

S = 0 +
1
2
βT n.

The equation of motion for n has no solution (it results in
1 = 0).
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There are also solutions corresponding to two parallel
M2-branes,

X1 =

(
L1√
2πn

q 0

0 L1√
2πn

q

)
≡ p1,

X2 =

(
L2√
2πn

p 0

0 L2√
2πn

p

)
≡ p2,

X3 =
(

r/2 0
0 −r/2

)
≡ p3,

other Xi = λ = 0, (25)

extending in X1 and X2 directions and at the distance r
in the X3 direction. Again, this solution clearly satisfies
(22), which means that the two M2-branes are under the
no-force condition.

4 M2-brane and anti-M2-brane
long-range interaction

In this section we calculate the long-range interaction be-
tween an M2-brane and anti-M2-brane in parallel. So-
lutions corresponding to two membranes with opposite
charges were introduced in [16]:

X1 =

(
L1√
2πn

q 0

0 L1√
2πn

q

)
≡ p1,

X2 =

(
L2√
2πn

p 0

0 − L2√
2πn

p

)
≡ p2,

X3 =
(

r/2 0
0 −r/2

)
≡ p3,

other Xi = λ = 0, (26)

where [q, p] = i . To calculate the potential between these
membranes, one must find the one-loop effective action of
(16). The one-loop effective action W was introduced in
the previous section (and calculated in Appendix 2),

W =
1
2
Trlog

(
P 2

i δIJ − 2iFij

)

− 1
4
Trlog

(
P 2

i +
i

2
Fijγ

ij

)
− Trlog(P 2

i ), (27)

where Pi ∗ = [pi, ∗], Fij ∗ = [fij , ∗], fij = i[pi, pj ].
The calculations of (27) with solutions like (26) are

similar to those of [14] for the interaction between two
anti-parallel D-strings. For solutions (26) we have [pi, fij ]
= c − number, which means that P 2

i and Fij are simul-
taneously diagonalizable. Also [P1, P2] ∼ i, which means
that P 2

i behaves like a harmonic oscillator. The steps of
calculations are presented in [14], and the result is

W = (−8n)(
L1L2

2πn
)3

1
r6 + O(

1
r8 ), (28)

which is in agreement with the 11-dimensional supergrav-
ity results for the interaction of an M2-brane and anti-M2-
brane [16,17]. It is notable that this result is in the uncom-
pactified limit of 11-dimensional supergravity, in contrast
to the result of light-cone M(atrix) theory (W (r) ∼ 1/r5)
[16].

The result (28) can be used for fixing the parameters
α and β in (16). By inserting (24) in (16), one finds

S = (
1
4
)αT (

L1L2

2πn
)2 n +

βT
2

n, (29)

and the equation of motion of n gives

L1L2

2πn
=

√
2β

α
, (30)

resulting in

S =
1
2π

√
αβ

2
(T L1L2) = TM (T L1L2), (31)

in which the second equality is the action of a flat mem-
brane with TM as its tension. (31) gives

TM =
1
2π

√
αβ

2
. (32)

By comparing (28) with 11-dimensional supergravity
interaction [16], one finds

L1L2

2πn
=
√

24πT
TM

. (33)

By using (30,32,33) and extracting an irrelevant numerical
factor, α and β are fixed as follows:

α =

√
T 3

M

T , β = 12π
√

TMT . (34)

By choosing T = T
−1/3
M , the action (16) becomes:

S = −1
2
T

4/3
M Tr

(
1
2
[Xi, Xj ]2

+ ([Xi, X10] − γ
1
2
λT[Xi, λ])2

+ iλTγi[Xi, λ]
)

+ 6πTr(1). (35)

5 Conclusion and discussions

In this paper we have introduced a matrix model of the
static configurations of M-theory. By construction, the
large n-limit of the model is, at least classically, equiv-
alent with static supermembrane action after κ-symmetry
gauge fixing. We calculated the long-range interaction of
a M2-brane and an anti-M2-brane solution in this model
and found it to be in agreement with the 11-dimensional
supergravity results.
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By definition M-theory reduces to various string the-
ories and their compactifications. However, a model for
static configurations of M-theory can not be interpreted
exactly as a string theory, because there are static con-
figurations in string theories which are not static in un-
compactified M-theory (e.g., non-moving D0-branes in IIA
theory, which are known to be Kaluza-Klein modes of
massless supergravitons of 11-dimensional supergravity,
and so they move with the speed of light in 11 dimen-
sions). Notice that the reverse of the above argument is
not valid; static configurations in M-theory remain static
after compactification. So compactifications of the static
matrix model are especially interesting.

Appendix 1 Conventions and notations

Signatures: gab = (−,+,+),
ηµν = (−,+,+,+,+,+,+,+,+,+,+),
ε0rs = −εrs, θ̄ = θ†Γ0, [Γµ, Γ ν ]+ = 2ηµν ,

Γµ† = Γ 0ΓµΓ 0, Γµν = 1/2(ΓµΓ ν − Γ νΓµ),

Γ 0 =
(

0 −116
116 0

)
, Γ 10 =

(
116 0
0 −116

)
,

Γ i =
(

0 γi
16

γi
16 0

)
, Γ+ = Γ 0 + Γ 10,

γi
16

† = γi
16

∗ = γi
16, [γ

i, γj ]+ = 2δij ,
Γ 1Γ 2...Γ 9Γ 10 = Γ 0.

Appendix 2 One-loop effective action

The calculation of this part is similar to that in [14]. In
this part we decompose the matrices X and θ to classical
solutions and quantum fluctuations as follows:

Xi = ( pi )class. + ai,

λ = ( 0 )class. + φ,

X10 = ( 0 )class. + a10, (36)

where (...)class. are classical solutions and the remaining
right-hand side are quantum fluctuations around classical
solutions. After expanding the action (16) up to quadratic
terms in fluctuations, and using equations of motion, one
finds

∆S = −Tr
(

1
2

[pi, aJ ]2 + [pi, pj ][ai, aj ] − 1
2
[pi, ai]2

+
i

2
φTγi[pi, φ]

)
. (37)

We have ghosts, because of the gauge invariance intro-
duced in the text,

Sghost = −Tr
(

1
2
[pi, ai]2 + [pi, b][pi, c]

)
.

By introducing the adjoint operators

Pi ∗ = [pi, ∗], Fij ∗ = [fij , ∗], fij = i[pi, pj ], (38)

the final form of the action will be

S2 = Tr
(

1
2
(aIP

2
i δIJaJ −ai2iFijaj)− i

2
φTγiPiφ+bP 2

i c

)
.

By inserting S2 into the path integral, the one-loop effec-
tive action is obtained:

W = −log
∫

[da][dφ][dc][db]e−S2

=
1
2

Trlog
(

P 2
i δIJ − 2iFij

)

− 1
4
Trlog

(
P 2

i +
i

2
Fijγ

ij

)
− Trlog(P 2

i ). (39)
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